Early Findings for EBBR and DENT Implementation and Prospects for Simplification

Simon A.M. Hesp
Queen’s University, Kingston, Ontario

Imperial Oil-OAPC Technical Symposium, Sarnia, Ontario
June 18, 2019
Acknowledgements

Imperial Oil of Canada

Ministry of Transportation of Ontario

Natural Sciences and Engineering Research Council of Canada

Ontario Municipalities

Others
Acknowledgements

Graduate Thesis Students (39): Li, Nawarathna, Lemaitre, Asiedu, Benavides, Ding, Gyasi, Tetteh, Somuah, Ubaid, Gotame, Sowah, Omari, Omo, Ghimire, Agarwal, Abiodun, Adhikari, Kumar, Agbovi, Kanabar, Kanabar, Soleimani, Subramani, Togunde, Iliuta, Andriescu, Zhao, Ploeger, Xing, Roy, Smith, Lazar, Crossley, Richardson, Petroff, Garcés-Rodriguez, Lee

Undergraduate Thesis Students (39): Toews, Van der Heyden, Strojek, Klus, Penstone, Verigin, Klein, Maurer, Ritchie, Fong, Armstrong, McEwan, Burke, Whitelaw, Scafe, Evans, Kehoe, Houlihan, Walsh, Faba, Gates, Malmberg, Pipkin, Chee Sing, Carran, Kurys, Sohn, Aida, Wagner, Knowles, Thom, Manolis, Cook, Crossley, Fairclough, Sharpe, Roberts, Coutts, Morrison

Superpave™ Performance Graded Asphalt Cement

RTFO → 3 → DSR → 4 → PAV → 6 → BBR → PG XX-II-YY
Shell Qualagon™ (1980s)

Adhesion
- Retained Marshall
- Exudation Droplet Test

Oxidation Stability
- HMA Storage \(\Delta \) R & B
- Field Trials \(\Delta \) R & B

Paraffinic Demixing
- Low Temp Ductility

Volatility
- TBP – GLC 450°C
- TBP – GLC 600°C

Oxidation Stability
- RTFO \(\Delta \) R & B
- RTFO Retained Pen

Van Gooswilligen et al., Eurobitumen, Madrid, 1989
Identical PG 64-34 Grades, Timmins
(Constructed 2003, Photographs 2008)

655-1 Sol-type: Low physical/oxidative hardening, R-value, S-controlled, and high CTOD. **Little or no cracking.**

655-4 Gel-type: High physical/oxidative hardening, R-value, m-controlled. **Major cracking and moisture damage.**

Stable RET + PPA

Unstable SBS + REOB
Modus Operandi for Municipalities

1. Control or ban what we can:
 • REOB, paraffin oils, etc.
 • Waste bio industry oil, vegetable oils, etc.
 • RAP, RAS, waxes, cracked/oxidized residues, etc.

2. Test extracted and recovered AC for what we cannot predict or imagine:
 • LS-228 Modified Pressure Aging Vessel (2012)
 • LS-299 Double-Edge-Notched Tension Test (2006)
 • LS-308 Extended Bending Beam Rheometer Test (2005)

3. As materials change so will the test methods and acceptance criteria.
AASHTO Adopted LS-308 EBBR as Provisional Standard TP 122-16

Standard Method of Test for

Determination of Performance Grade of Physically Aged Asphalt Binder Using Extended Bending Beam Rheometer (BBR) Method

AASHTO Designation: TP 122-16
Thermoreversible Aging of “Gel-Type” Structures in Asphalt Cement

AFM of Waxes + Saturates
Pauli et al., IJPE, 2011

ESEM of Resins + Asphaltenes
Lamont C-SHRP Cracking Correlations (2006)

M 320 (1 h) MTQ Results (blue) vs T(m=0.35, 72 h) Queen’s Results (green)

\[y = 12x + 460 \quad R^2 = 0.73 \]

\[y = 4.7x + 140 \quad R^2 = 0.996 \]

30°C Error!

Gavin et al., CTAA, 2003 and Zhao and Hesp, IJPE, 2006
Phase Contrast and Fluorescence Microscopy on Asphalt Cement (2007)

Lamont RR-7L Cold Lake

False Blue = Phase Contrast
False Green = Fluorescence

Stable 300/400 pen Cold Lake binder from Section 7 in Lamont never cracked for 22 years until trial site was reconstructed:

- Little or no phase separation;
- Low physical hardening;
- Low oxidative hardening;
- Low R-value;
- S-controlled; and
- high CTOD

Hesp et al., Energy and Fuels, 2007
Recovered Grading by EBBR (MTO LS-308)

106 Contract Samples (-28 and -34 zones)

Acceptable: 26 29 32
Borderline: 5 0 2
Failed: 6 5 1

Ding et al., CTAA, Regina, 2018
AASHTO Adopted DENT as Provisional Standard TP 113-15

Standard Method of Test for

Determination of Asphalt Binder Resistance to Ductile Failure Using Double-Edge-Notched Tension (DENT) Test

AASHTO Designation: TP 113-15
Recovered Grading by DENT (TP 113-15)
106 Contract Samples (-28 and -34 zones)

Acceptable: 29 29 33
Borderline: 2 2 1
Failed: 6 3 1

Limits
20 mm
14 mm

Ding et al., CTAA, Regina, 2018
Corrélations entre la fissuration et les caractéristiques des bitumes (1998)
(Correlation of Cracking Distress with Bitumen Properties)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Field Cracking (7 Years)</th>
<th>Change Field/Unaged</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(\delta=27^\circ, 7.8 \text{ Hz})$</td>
<td>*****</td>
<td>*****</td>
</tr>
<tr>
<td>$T(\delta=45^\circ, 7.8 \text{ Hz})$</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>$T(S=300 \text{ MPa})$</td>
<td>****</td>
<td>****</td>
</tr>
<tr>
<td>m-value</td>
<td>****</td>
<td>***</td>
</tr>
<tr>
<td>$T(m=0.300)$</td>
<td>*****</td>
<td>*****</td>
</tr>
</tbody>
</table>

Migliori et al., Eurobitumen, Luxembourg, 1998 *(LCPC, Colas, Shell, Mobil, BP, Esso)* (this followed earlier papers in Europe, USA and Canada on phase angle measurements to study/mitigate cracking).
Correlation of Cracking Distress with Asphalt Cement Phase Angle (2009)

Contracts from Eastern Ontario (20 samples)

\[
\tan \delta = 0.54 \rightarrow \delta = 28^\circ
\]

Soleimani et al., JTRB, 2009
Limiting Phase Angle vs M320 or LS-308
2011 Implementation Contracts (60+ samples, 2018-2019)

R² = 0.67-0.71

Ding et al., CTAA, Regina, 2018 and Lill et al., CTAA, Montreal, 2019
Performance Graded AC Testing Correlation Program of MTO (2015)

<table>
<thead>
<tr>
<th>Test</th>
<th>Parameter</th>
<th>COV</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSR<sub>Unaged</sub></td>
<td>Complex Modulus, G*</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>Phase Angle, δ</td>
<td>0.005</td>
</tr>
<tr>
<td>DSR<sub>RTFO</sub></td>
<td>Complex Modulus, G*</td>
<td>0.064</td>
</tr>
<tr>
<td></td>
<td>Phase Angle, δ</td>
<td>0.007</td>
</tr>
<tr>
<td>DSR<sub>PAV</sub></td>
<td>Complex Modulus, G*</td>
<td>0.110</td>
</tr>
<tr>
<td></td>
<td>Phase Angle, δ</td>
<td>0.017</td>
</tr>
<tr>
<td>BBR<sub>PAV</sub></td>
<td>Creep Stiffness, S</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>Creep Rate, m</td>
<td>0.021</td>
</tr>
</tbody>
</table>
M320 and LS-308 vs Phase Angle

2011 Implementation Contracts (60+ samples, 2019)

<table>
<thead>
<tr>
<th></th>
<th>BBR</th>
<th>EBBR</th>
<th>Phase Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>-43</td>
<td>-39</td>
<td>-17</td>
</tr>
<tr>
<td>High</td>
<td>-26</td>
<td>-14</td>
<td>13</td>
</tr>
</tbody>
</table>
Effect of Cold Conditioning on ΔT_c BBR

Contracts from Eastern Ontario (20 samples, 2009)

Hesp and Subramani, MAIREPAV6, Turin, Italy, 2009
AASHTO M 320 and MTO LS-308 vs LS-228 Modified PAV

655 Trial Sections + Alberta Binders (11 samples, 2012)

Erskine et al., Eurobitumen, Istanbul, Turkey, 2012
Rheological Type Determination with ΔT_c BBR

2011 Implementation Contracts (42 samples, 2018)

ΔT_c (BBR, 1 h), °C

EBBR Grade Loss, °C

$R^2 = 0.09$

ΔT_c (EBBR, 72 h), °C

EBBR Grade Loss, °C

$R^2 = 0.69$

Ding et al., JCBM, 2018
655 Black Space Diagram (15 Years, 2018)

655-1 (Best ●) vs 655-4 (Worst ●)

$T(\delta_{30^\circ}) = 0^\circ C$

$T(G^*_{100 \text{ MPa}}) = -6^\circ C$

$\Delta T_{cd} = +6^\circ C$

$T(\delta_{30^\circ}) = +26^\circ C$

$T(G^*_{100 \text{ MPa}}) = 1^\circ C$

$\Delta T_{cd} = +25^\circ C$
Limiting Phase Angle and Stiffness (2018)

Recovered Binder

User A

User B

User C

Recovered Binder

User A

User B

User C

Recovered Binder

• Effect of 10, 20 and 30 % RAP on PG 58-28 A & B
• Effect of 10, 20 and 30 % RAS on PG 58-28 A & B
• Effect of 4, 8, 12 and 16 % REOB on PG 58-28 C
• Effect of binder source and grade on G*
• Effect of PAV aging time
• Effect of PAV film thickness
Effect of RAP/RAS on PG 58-28 A

RAP/RAS Content, %

G*, MPa

T(δ=30), °C
Effect of RAP/RAS on PG 58-28 B

![Graph showing the effect of RAP/RAS content on T(δ=30) and G* values.](image)

Graph 1:
- **T(δ=30), °C**
 - RAP 7: 1.8
 - RAP 11: 2.1
 - RAP 403: 4.3
 - RAS: 5.2

Graph 2:
- **G*, MPa**
 - RAP 7: 50
 - RAP 11: 49
 - RAP 403: 41
 - RAS: 41

Legend:
- Blue: RAP 7
- Red: RAP 11
- Green: RAP 403
- Yellow: RAS

RAP/RAS Content, %
- 0%
- 10%
- 20%
- 30%

T(δ=30), °C
- 0
- 10
- 20
- 30

G*, MPa
- 0
- 10
- 20
- 30

This graph illustrates the effect of RAP/RAS content on the T(δ=30) and G* values for PG 58-28 B. The data shows how the incorporation of RAP/RAS affects the performance of asphalt mixtures at different percentages.
Effect of REOB on PG 58-28 C

- Upper graph: $T(\delta=30)$, °C
 - REOB Content, %: 0, 4, 8, 12, 16
 - Values: 3, 1, 0, 1, -2

- Lower graph: G^*, MPa
 - REOB Content, %: 0, 4, 8, 12, 16
 - Values: 81, 66, 55, 38, 38
CTOD vs Flexibility Index-B

R² = 0.97
CTOD vs Butt Joint Failure Strain (D_f)

R² = 0.90
MTO NER PG 52-40

Unstable binder showing excessive degree of paraffinic demixing (REOB > 30%):

\[
T(\delta = 30^\circ) = 28^\circ C \\
T(G^* = 100 \text{ MPa}) = -16^\circ C \\
\Delta T_{cd} = 44^\circ C \ldots
\]

40-46°C grading error !?

False Blue = Phase Contrast
False Green = Fluorescence

Hesp et al., Energy and Fuels, 2007
Summary and Conclusions

• EBBR and DENT tests are highly sensitive indicators for AC quality and durability and for that reason are being implemented by user agencies.

• PAV protocol needs to be improved or replaced.

• Phase angle and complex modulus need more study but show promise to replace EBBR test.

• Fatigue index and pull-off strain at failure need more study but show promise to replace the DENT test.

• It is important to test recovered AC!
Thank you!

Questions?

Chemistry Department
25 faculty, 100 graduate students & 1000+ undergraduate students

Queen's University
1,000 faculty, 4,000 graduate students & 20,000 undergraduate students