HMA Surface Permeability for HMA Acceptance

Don Rowat, P.Eng., Area Contracts Engineer
Imran Bashir, P.Eng., Bituminous Engineer
Ministry of Transportation Ontario

AMIR/TRAK Asphalt Compaction Technology Demonstration Day
Long Sault, ON August 22, 2019
Outline

- Background
- Development of Field Permeability Test Equipment
- Permeability Limits for HMA Acceptance - Jurisdictional Scan
- Development of Field Permeability Criteria for Ontario
- Next Steps
Background

❖ 2012: First AMIR trials started with MTO / Carleton
❖ 2014 to 2016:
 • 4 bridge decks compacted side by side using conventional compaction equipment (static steel roller) and AMIR
❖ 2013-2019: Two HIIFP Studies awarded to Carleton University
 • Objectives were to develop permeability criteria for hot-mix asphalt pavements and develop in-situ permeability apparatus for use with a new surface permeability specification
❖ Nov. 2017: Field trial at Didsbury Road (Ottawa) was constructed using various available compaction technologies and gather permeability test data
❖ Nov. 2018: Hwy 401 at LaRue Mills
Development of Field Permeability Test Equipment

- Previous equipment was NCAT
 - Difficult to achieve a seal, messy, time consuming
 - Plastic
 - Readings done visually
Development of Field Permeability Test Equipment

- Iterative approach:
 - Needs to be heavy to seal; seal to be reusable material (not silicone, plumbers putty)
Development of Field Permeability Test Equipment

- Too Heavy, seal material hand cut
Development of Field Permeability Test Equipment
Development of Field Permeability Test Equipment

- Carleton developed software to be used with electronic sensors to facilitate readings that are now done automatically and objectively.
Lab Permeability Test Equipment

- Lab test to establish how each mix will perform under ideal conditions for permeability

- Target:
 - Permeability at 8% air voids; corresponding to asphalt compaction meeting MTO specification

- Florida DOT test method FM 5-565
Jurisdictional Scan: Permeability Limits for HMA Acceptance

- NCHRP Report 531: Relationship of Air Voids, Lift Thickness, and Permeability in Hot Mix Asphalt Pavements

<table>
<thead>
<tr>
<th>State</th>
<th>Critical Permeability (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Mexico (Proposed)</td>
<td>125E-5</td>
</tr>
<tr>
<td>Florida</td>
<td>125E-5</td>
</tr>
<tr>
<td>Oklahoma</td>
<td>125E-5</td>
</tr>
<tr>
<td>Virginia</td>
<td>125E-5</td>
</tr>
</tbody>
</table>

Source: Rafi Tarefder, University of New Mexico
Development of Field Permeability Criteria for Ontario

- Field permeability test data collected from Didsbury Road and 5 others bridge paving trials
 - Test data analyzed to establish/validate criteria for field permeability for Superpave 12.5 mixes
- Lab permeability testing also carried out on field cores and lab compacted samples from loose mix collected from the site
- Varied mat thicknesses (40mm to 100mm)
Results:

<table>
<thead>
<tr>
<th>Trials</th>
<th>Mix Type</th>
<th>Ave. Permeability (x10^{-5})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Steel</td>
</tr>
<tr>
<td>Didsbury Rd</td>
<td>12.5FC2 Cat E</td>
<td>390</td>
</tr>
<tr>
<td>Hwy 28</td>
<td>12.5 FC1 Cat C</td>
<td>360</td>
</tr>
<tr>
<td>Hwy 417/34 bridge</td>
<td>12.5 FC2 Cat D</td>
<td>640</td>
</tr>
<tr>
<td>Hwy 401 Holt Rd bridge</td>
<td>12.5 FC2 Cat E</td>
<td>1010</td>
</tr>
<tr>
<td>Hwy 520 Distress River bridge</td>
<td>12.5 WMA Cat B</td>
<td>560</td>
</tr>
</tbody>
</table>
Low permeability specification is incentive based to raise the compacted asphalt quality bar

- No penalty
- Any contractor can try to meet the requirements
- No equipment specified
- Other types of equipment / processes other may also be able to produce lower permeability asphalt

No incentive if mix is rejectable for other ERS mix attributes
Low Permeability Surface Incentive Criteria

- The application of the low permeability surface incentive will be assessed based on the lot Incentive Factor based on the lot average field permeability and average laboratory permeability.

Permeability Criteria and Lot Incentive Factors

(When Lot Lab Permeability $(LP_L) \leq 25 \times 10^{-5}$ cm/s)**

<table>
<thead>
<tr>
<th>Field Permeability of Lot (FP_L), 10^{-5} cm/s</th>
<th>Lot Incentive Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$FP_L < 125$</td>
<td>1</td>
</tr>
<tr>
<td>$126 \leq FP_L \leq 250$</td>
<td>0.75</td>
</tr>
<tr>
<td>$251 \leq FP_L \leq 350$</td>
<td>0.50</td>
</tr>
<tr>
<td>$351 \geq FP_L$</td>
<td>0</td>
</tr>
</tbody>
</table>
Permeability Criteria and Lot Incentive Factors
(When Lot Lab Permeability $\geq 25 \times 10^{-5}$ cm/s)

<table>
<thead>
<tr>
<th>Lot Field Permeability (FP_L), 10^{-5} cm/s</th>
<th>Lot Incentive Factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>$FP_L < (2 \times LP_L)$</td>
<td>1</td>
</tr>
<tr>
<td>$(2 \times LP_L) +0.1 \leq FP_L \leq 3 \times LP_L$</td>
<td>0.75</td>
</tr>
<tr>
<td>$(3 \times LP_L) +0.1 \leq FP_L < 4 \times LP_L$</td>
<td>0.50</td>
</tr>
<tr>
<td>$(4 \times LP_L) +0.1 \geq FP_L$</td>
<td>0</td>
</tr>
</tbody>
</table>

Testing Requirements

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Testing Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field Permeability</td>
<td>MTO test procedure using automated Carleton In-Situ Permeability Apparatus (CIPA)</td>
</tr>
<tr>
<td>Lab Permeability</td>
<td>Florida DOT test method FM 5-565</td>
</tr>
</tbody>
</table>
Acceptance Testing for Determining Low Permeability Surface Incentive

• In-Situ Permeability measurements shall be conducted on the compacted HMA surface, from each sublot after the completion and prior to opening to the traffic
• 1 test per sublot, 10 sublots per lot, Ave. for the lot = Field permeability
• Lab permeability is the permeability of a Superpave gyratory compacted specimen, compacted to 8% air voids
 - 3 gyratory samples compacted to approximately 6, 8 and 10% air voids
 - Permeability at 8% air voids is interpolated from a laboratory plot
Next Steps

❖ Finalize draft low permeability incentive specification
❖ Implement permeability specification in select contracts on a trial basis
❖ Monitor low permeability trials performance and continue to update specification
Questions?

Don Rowat, P.Eng.
Area Contracts Engineer
Eastern Region - Operations
Ministry of Transportation, Ontario
1355 John Counter Blvd.,
Kingston, Ontario K7L 5A3
(613) 331-5651
Don.Rowat@ontario.ca

Bituminous Engineer
Materials Engineering and Research Office
Ministry of Transportation, Ontario
145 Sir William Hearst Avenue, Room 238
Downsview, Ontario M3M 0B6
(416) 721-6351
Imran.Bashir@ontario.ca