Latest RAP Study Results

Susan Tighe, Xiomara Sanchez, Doubra Ambaiowei, Magdy Shaheen
CPATT, University of Waterloo

Vince Aurilio
DBA Engineering Ltd.

Sandy Brown, Fernando Magisano, Pamela Marks, Seyed Tabib

December 2013
Presentation Overview

• Background
• Overview of Study
• Results to Date
• Discussion
• Impact of Findings
Background

• RAP is a valuable high quality construction material – not a waste material
• Recycled Hot Mix (RHM) has a long history of demonstrated performance
• Optimizing RAP use makes pavements more sustainable
• MTO began their recycling program in 1978, early projects had RAP contents that were as high as 70 percent.
• Performance of HMA containing RAP was found to be directly related to the penetration of the recovered binder.
• Higher RAP contents, under-asphalting of the mix was a common problem.
Background

• RAP is routinely used in HMA by nearly all 50 states and considered standard asphalt paving practice.
• Abundant quantity of technical data indicating that when properly specified and produced RHM asphalt is equivalent in quality and structural performance to conventional HMA.
• FHWA supports and promotes the use of recycled highway materials in pavement construction in an effort to preserve the natural environment, reduce waste, and provide a cost effective material for constructing highways.
• FHWA/EPA report RAP is the most frequently recycled material
<table>
<thead>
<tr>
<th>Planning and Programming</th>
<th>Design</th>
<th>Construction</th>
<th>Maintenance, Preservation and Rehabilitation</th>
<th>In-Service Evaluation</th>
<th>End of Service Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Traffic and Environmental data information</td>
<td>• Information on materials, traffic, costs, environment, etc.</td>
<td>• Environment during construction</td>
<td>• Standards</td>
<td>• Periodic monitoring of structural adequacy, roughness, surface distress, and surface friction</td>
<td>• Recycling and reuse of materials for reconstruction</td>
</tr>
<tr>
<td>• Assess network deficiencies</td>
<td>• Design alternatives</td>
<td>• Specifications</td>
<td>• Treatments</td>
<td>• Salvage Value</td>
<td>• Records</td>
</tr>
<tr>
<td>• Budgets</td>
<td>• Analysis</td>
<td>• Contracts</td>
<td>• Schedules</td>
<td>• Restored</td>
<td>• Records</td>
</tr>
<tr>
<td>• Establish priorities</td>
<td>• Optimization</td>
<td>• Schedules</td>
<td>• Construction operations</td>
<td>• Restoration</td>
<td>• Zero Waste Management</td>
</tr>
<tr>
<td>• Schedule projects</td>
<td>• Sustainability</td>
<td>• Quality control/quality assurance</td>
<td>• User costs</td>
<td>• Assess performance</td>
<td></td>
</tr>
<tr>
<td>• Priorities</td>
<td>• User costs</td>
<td>• Records</td>
<td></td>
<td>• Prioritize</td>
<td></td>
</tr>
</tbody>
</table>

“Working” Management Loop

Database

Research Loop

Information

Research
Overview of Study

• Use of Reclaimed Asphalt Pavement (RAP) in Hot Mix Asphalt (HMA) is a common practice in Ontario
• Can current practices be improved?
• Opportunity to consider higher rates of recycling?
• Is there a difference between RAP from Northern Ontario versus Southern Ontario
• Opportunity to foster innovation and sustainability?

WANT TO EXAMINE WHAT HAPPENS AS WE ADD RAP AND CHANGE AC TYPE
Overview of Study

• Evaluate the impact that RAP has on two common Ontario mixes, SP12.5 and SP19
• Understand how the addition of RAP to HMA alters the performance of the mix
• Examine if HMA can be tested to determine the % RAP
• Determine if performance tests can be used to back-calculate Performance Grades for mixes containing RAP
• Consider application of RAP for both Southern and Northern Ontario roads.
• Provide some new guidelines on the usage of RAP
Overview of Study

• Carry out a comprehensive literature review on the state-of-the-art of RAP usage.
• Evaluate consensus properties of aggregates.
• Recover and characterize asphalt cement in RAP.
• An extensive laboratory-based study was designed to evaluate mix properties including performance tests such as:
 • Dynamic modulus testing
 • Thermal Stress Restrained Specimen Test (TSRST)
 • Fatigue beam
 • Disk-shaped Compact Tension Specimen
Methodology

Design

Sieving

Batching

Mixing
Methodology

Conditioning → Compacting → Coring → Testing
Concerns Using RAP

- Effects on moisture susceptibility of the mix.
- Endurance against fatigue and thermal cracking.
- Mix stiffening and premature aging of the HMA.
- Adjustment of binder grade ("binder bumping").
- Inability to meet consensus properties.
- Losing desired performance grade of binder.
- Reduced workability and "compactability" in the field.
- Need for new plant technologies.
- Variability in the RAP.
Understanding RAP

• Addition of RAP increases stiffness of the mix.
• Results have been contradictory in whether the addition of RAP results in diminished performance in regard to thermal and fatigue cracking.
• Age or stiffness of the binder does not attribute to the performance of the new mix for RAP contents up to 20%.
• Moisture susceptibility of the mix does not increase due to the addition of higher percentages of RAP.
• RAP source can have an effect on the performance of the final mix.
• Type of aggregate in the RAP can play a significant role in the performance of the HMA mix.
Understanding RAP

Table 1: RAP Content and SP12.5/SP19 Course Compatibility

<table>
<thead>
<tr>
<th>RAP Content</th>
<th>SP12.5 (Surface Course)</th>
<th>SP19 (Binder Course)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Southern</td>
<td>Northern</td>
</tr>
<tr>
<td>0%</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>15%</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>20%</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>30%</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>40%</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Results to Date

% Passing

Sieve opening (mm)

- 0% RAP
- 20% RAP
- 40% RAP
- Minimum
- Maximum
Results to Date

- The angularity, in terms of crushed faces, decreases as the percentage of RAP added increases for southern mixes.
- Percent crushed faces decreases by 2.6 percent with the addition of 40 percent RAP.
Results to Date

- Sand equivalent, the value increases as the percent RAP increases.
- RAP mixtures have less proportion of clay-like materials, which benefit the binding of AC with the aggregate.
Results to Date

- Voids in the Mineral Aggregate (VMA) and Voids Filled with Asphalt (VFA) decrease as the percent RAP increases.
- Percentage of virgin asphalt added decreases, but more fines from the RAP fill the spaces between particles.
Results to Date

- For the Dust Proportion (DP), an increase of almost 60% was observed for the RAP mixtures as compared to the virgin mixes.
- This result is probably related to the lower effective binder content for the RAP mixtures.
Results to Date

- All TSR values were above the minimum 80 percent required.
- The lowest results were obtained from the 40% RAP mixes, which are about 4% below the result obtained for the virgin mix.
Thermal Stress Restrained Specimen Test

- Resistance to thermal cracking.
- Beam 250x50x50mm.
- Cools specimen at -10°C/hour.
- Restrain from contraction.
- Fractures as internally generated stress exceeds tensile strength.
- Measure fracture stress and temperature.
Dynamic Modulus

- Varying temperature and loading frequency.
- Sinusoidal axial compressive stress applied to a specimen.
- Measure recoverable axial strain response.
- Calculate modulus and phase angle
Fatigue Beam

- Temperature 20.0 +/- 0.5°C.
- Beam 380x50x63mm.
- Fatigue resistance / Flexural bending.
- Graph number of cycles vs. strain.
- Determine fatigue life.
Disk-Shaped Compact Tension Test

- Measure fracture resistance.
- Disk 150x50mm.
- Low temperature PG + 10ºC.
- Fracture energy: area under the curve Load (kN) vs Crack Mouth Opening Displacement CMOD (mm), normalized by the area of the fractured surface.
Results to Date

<table>
<thead>
<tr>
<th>Mix Type</th>
<th>Mean Fracture Stress (MPa)</th>
<th>Mean Failure Temp (°C)</th>
<th>Mean Max. Load (KN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP12.5mm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-58-28</td>
<td>2.0</td>
<td>-30</td>
<td>5.1</td>
</tr>
<tr>
<td>0-52-34</td>
<td>1.7</td>
<td>-34</td>
<td>4.3</td>
</tr>
<tr>
<td>20-58-34</td>
<td>2.6</td>
<td>-34</td>
<td>6.4</td>
</tr>
<tr>
<td>40-58-28</td>
<td>2.2</td>
<td>-29</td>
<td>5.5</td>
</tr>
</tbody>
</table>

- ANOVA and t-test did not show significant difference.
- Three replicates per mix type.
Discussion

- It is possible to design efficient mixes containing RAP.
- All the specified properties for the Superpave design are met, as well as the consensus properties.
- RAP addition affects the angularity of coarse aggregate, could have an effect in the rutting of RHM.
- Dust proportion is affected with the addition of RAP.
- RAP content does not affect the fracture resistance.
- Up to 40% RAP can be added without affecting the low temperature PG of the mix.
State-of-the-art Infrastructure
Impact of Findings

Serviceability

Cost

Environmental Impacts

Conventional Pavement

Warm Asphalt

Recycled Pavement/Using By-Products
Acknowledgements

- Centre for Pavement and Transportation Technology University of Waterloo (CPATT).
- DBA Engineering Ltd.
- Ministry of Transportation Ontario (MTO).
- Natural Sciences and Engineering Research Council of Canada (NSERC).
- Capital Paving Inc.
- McAsphalt Industries Ltd.
- Canadian Asphalt Industries Inc.
- Bitumar Inc.
- Coco Paving Inc.
Thank you!

Susan Tighe, PhD, P. Eng.
Professor, Canada Research Chair
Norman W. McLeod Professor in Sustainable Pavement Engineering
Director, Centre for Pavement and Transportation Technology
Department of Civil and Environmental Engineering
Tel: 519-888-4567 x 33152
Email: sltighe@uwaterloo.ca