Why Ontario Lands On Us!
HMA is the Standard for Runways Everywhere

Ludomir Uzarowski, Ph.D., P.Eng., Golder Associates Ltd.

ACKNOWLEDGEMENTS

- Sandy Brown, Ontario Hot-Mix Producers Association
- Rabiah Rizvi, Golder Associates Ltd.
- Chris Wood, Region of Waterloo International Airport
- Frank Kosa, Region of Waterloo
- Nelson Pilgrim, Churchill Falls Airport
PRESENTATION OUTLINE

- Introduction
- Asphalt runways in Canada
- Why is HMA so widely used for airside pavements?
- Basics of HMA in airport application
- Improvements in design, materials and construction
- Importance of proper specifications
- Effective maintenance and preventive treatment
- Pavement sustainability
- Summary

INTRODUCTION

- Airside pavements include runways, taxiways, aprons
- 90% of airport pavements in North America are asphalt
- In Canada the proportion is between 80 – 85%
ASPHALT PAVEMENTS IN NORTH AMERICA

- Asphalt works well in all climatic zones
- Wide application across Canada and North America
 - Hot regions – California (Oakland, Sacramento) and other States in the US
 - Moderate regions – Southern Ontario (GTAA, Waterloo Airport, Hamilton Airport), British Columbia (Vancouver)
 - Cold regions – Northern Ontario (Sudbury), Alberta (Edmonton), Labrador (Churchill Falls), Alaska (Anchorage)
 - Arctic condition – Nunavut (Iqaluit)

AIRSIDE ASPHALT PAVEMENTS IN CANADA

- In the past the guidance for pavement and materials technology was provided by Transport Canada
- Since privatization this practice has gradually been changed
- Current practice involves mixture of
 - Previous guidance from Transport Canada
 - Provincial technology
 - Some influence from US Federal Aviation Administration
- AAPTP program
 - Pavement construction, maintenance and rehabilitation activities for airfield pavements
WHY IS HMA SO POPULAR?

- Extensive design and construction experience
- Good contractors available
- Good quality of materials - aggregates, asphalt cements and mixes
- Good quality of final product
- Proven history of long-term performance
- Cost effective – initial and life cycle
- Significant improvement in technology
- Easy maintenance and preventive treatments
- Sustainable

HMA IN AIRSIDE PAVEMENTS

- Study/comparison of airside asphalt practice in Canada by Golder for SWIFT in 2008
 - Included PWGSC and DND practices and large and medium size airports
- Mainly Marshall mixes
- Superpave PGAC system widely used
- Aggregate type and quality selected for anticipated traffic loading
- In surface course target laboratory air voids reduced to 3.5% - channelized traffic and less traffic sealing action
- Limited use of RAP
HMA IN AIRSIDE PAVEMENTS

- Construction
 - Echelon paving commonly required
 - Few airport required material transfer vehicle (MTV)
 - Smoothness requirements in specifications
 - Friction characteristics specified by very few airports
- Acceptance
 - Asphalt cement content
 - Gradation
 - Laboratory air voids
 - Marshall stability
 - Field compaction
 - Joint compaction – very few airports
 - Smoothness

TECHNOLOGY IMPROVEMENTS

- Pavement Design
 - Originally TC ASG 19 sometimes verified using FAA and ICAO methodologies
 - FAARFIELD
 - FAA methodology for rehabilitation and overlays
- Asphalt Cement
 - Performance Graded Asphalt Cement
 - Binder grade selection for airfield pavement based on equivalent highway ESALs (EHE)
 - address tire pressure and wander
 - Polymer modification
 - Improved testing
TECHNOLOGY IMPROVEMENTS

- Aggregates
 - Move from LA abrasion to MicroDeval
 - High quality aggregates specified for heavy aircraft traffic

- Mixes
 - Superpave and SMA – near future?
 - Mechanistic properties testing
 - dynamic modulus
 - rutting resistance
 - fatigue endurance
 - low temperature cracking resistance

TECHNOLOGY IMPROVEMENTS – MIXES

- Warm Mix Asphalt
 - Benefits – reduced fuel use; late season paving; better workability and compaction; less oxidation; reduced GHG; improved working conditions

- Technology Categories
 - Organic additives (Sasobit)
 - Chemical additives (Evotherm, Hypotherm)
 - Water bearing additives (Advera)
 - Water based processes (Foaming)
TECHNOLOGY IMPROVEMENTS – MIXES

- Warm Mix Asphalt
 - OPSS Special Provision for mix design

- NCHRP 9-43 WMA Mix Design process
 - Material selection
 - Design aggregate structure
 - Design asphalt binder content
 - Evaluate moisture susceptibility
 - Rutting resistance
 - Mix performance

TECHNOLOGY IMPROVEMENT – CONSTRUCTION PRACTICE

- Echelon Paving
 - Eliminating cold joints

- Use of MTV
 - Eliminating gradation and temperature segregation
 - Continuous paving operation
 - Improved smoothness

- Joint Construction
 - Golder’s 2009 paper on Innovative Durable Joint Construction
 - Specified joint compaction
 - Eliminating cold joints
 - Infrared heaters
 - WMA

- Better construction practice for cold joints
TECHNOLOGY IMPROVEMENT – LATE SEASON PAVING

Main issues to address
- Hard to get compaction
- Hard to get good joints

Solutions
- Plan for late season work
- Technical solutions
 - Thicker lifts
 - Tarps to retain heat
 - Heated and insulated truck boxes
 - Preheating screed and rollers
 - MTV
 - Infrared heaters
 - WMA

AIRSIDE ASPHALT PAVING SPECIFICATIONS

Critical importance

Address major aspects of airside pavements
- Climatic zones – AC grade and mix moisture susceptibility
- Asphalt cement availability
- Locally available aggregates
- Local practice
- Mix strength
- Frictional characteristics

Specific requirements and challenges for airports in far north and in the arctic
EXAMPLE OF RECENT RUNWAY ASPHALT PAVEMENTS

- Waterloo International Airport, Ontario
- Edmonton International Airport, Alberta
- Greater Sudbury Airport, Ontario
- Price Rupert Airport, British Columbia
- Churchill Falls Airport, Labrador

WATERLOO INTERNATIONAL AIRPORT

- Carried out geotechnical and pavement investigation on Runway 08-26
- Provided recommendations for rehabilitation based on existing pavement condition, climate and traffic
- PLR 9.8
- Tire pressure > 1.0 MPa
WATERLOO INTERNATIONAL AIRPORT

- Developed custom specifications for materials and construction
 - PGAC 70-28 PM to provide good resistance to permanent deformation and durability
 - High AC content to minimize oxidation
 - Gradation to provide good texture and frictional properties
 - Paving in echelon to minimize cold joints
 - Infrared heaters for good quality joints
- Construction monitoring and materials testing to ensure quality product
- Good cooperation between all team members to resolve issues in a timely manner

CHURCHILL FALLS AIRPORT

- Very difficult soil and climatic conditions
- Remote location with limited availability of good quality materials
- Various rehabilitation alternatives and life cycle cost analysis
- Custom specifications
 - Granular materials with good drainage characteristics
 - AC grade to accommodate extreme cold temperatures
 - Polymer modified AC to provide good durability
 - Mix gradation to provide good texture
CHURCHILL FALLS AIRPORT

- Experienced pavement specialist on site full-time to monitor paving and address concerns immediately
- Do not compromise on material and mix quality due to remoteness
- Final quality of pavement was excellent

MAINTENANCE AND PREVENTIVE TREATMENTS

- Very extensive experience
- Simple and effective
- Works best when the right treatment is applied at the right location and time
- Main distresses to be addressed:
 - Structural – rutting (rare) and fatigue cracking
 - Environmental – thermal and block cracking, frost heaves and depressions
 - Construction related – longitudinal cracking, raveling
 - Other distresses – asphalt shoving and joint sealant debonding
MAINTENANCE AND PREVENTIVE TREATMENTS

- Treatments Include
 - Crack sealing/filling
 - Surface grooving
 - Patching
 - Surface rejuvenating
 - Micro milling
 - Thin surfacings – surface treatments, slurry seals, micro surfacing, thin overlays
 - Hot in-place and cold in-place recycling

AIRSIDE ASPHALT PAVEMENT SUSTAINABILITY

- What is sustainability?
 Sustainable development is defined in the Brundtland Report in 1987 as:
 "..... development that meets the needs of the present without compromising the ability of future generation to meet their needs"

- Triple bottom line
 - To achieve sustainability three aspects need to be considered
 - Economic – associated costs
 - Environment – impact to our surroundings
 - Social – impact on the general public
 - Technical aspects also need to be considered in addition to the triple bottom line to achieve sustainability
Sustainable Pavements

- Sustainable Pavements – safe, efficient, durable, minimum impact on environment

- Criteria
 - Minimize use of natural resources
 - Recycling – asphalt is 100% recyclable
 - Reduced energy consumption
 - Reduced GHG emissions
 - Limiting pollution
 - Improving safety and risk prevention
 - Reduced user delay and increased comfort
 - Longer lasting
 - Innovative

- Cannot compromise pavement performance

ASPHALT PAVEMENT SUSTAINABILITY

- Long lasting (perpetual) pavements
 - Red Hill Valley Parkway in Hamilton
 - GoldSet system used for sustainability analysis
 - 5 years after construction pavement condition is excellent
SUMMARY

- More than 80% of airside pavements in Canada are asphalt
- Well established technology that provides good pavement performance
- Important recent improvements have significant impact on performance
- Proper paving specifications are critical
- Importance of proper and timely application of maintenance and preventive treatments
- Asphalt pavements are sustainable

THANK YOU!

QUESTIONS?

luzarowski@golder.com
(905) 567-4444