

# The Road Ahead: Plastics in Asphalt

OAPC – 2021 Asphalt Technical Symposium (ATS) Webinar June 15, 2021

> Amma Wakefield, MASc, PEng. Canadian Regional Engineer Asphalt Institute





### Amma Wakefield, MASc, PEng.

**Canadian Regional Engineer** 

- Bachelors of Engineering Materials Engineering
  - McMaster University
- Began career in a Mix Design Lab in 2006
- Master of Applied Science Civil Engineering (2011)
  - University of Waterloo
- Managed QC, QMS, and Corporate Research & Mix Design Lab for Miller Paving Limited (6 years)
- Currently Canadian Regional Engineer for the Asphalt Institute, since January 2018

## Background



Plastic is not the first waste product that has been researched as an additive or modifier to asphalt.

Common misconceptions: all waste plastic is the same, consistent and appropriate for use in asphalt.

This simply is not true.



**Literature Review** 



A joint Asphalt Institute/NAPA task force formed in late 2019 to address the topic of recycled plastics in asphalt.

#### **Objective:**

Develop a document to compile the literature and describe current state of the knowledge while identifying knowledge gaps and future research needs.

Completed in November 2020 with the release of two documents:





- Wet method
  - Blended with asphalt binder
  - $^{\circ}$  Up to 8% by weight of binder
- Dry method
  - Aggregate replacement/mixture modifier
  - $^{\circ}$  Up to 1% of aggregate weight
- Literature shows plastic had a stiffening effect on the binder
  - Potentially improve rutting resistance
  - Very few studies examine binder properties related to fatigue or lowtemperature cracking



- Sourcing
- Dry Process
- Wet Process
- Environmental
- Field Performance



## • Sourcing

- Research is needed around waste plastic sourcing and recycling process for type, availability, consistency and cleanliness.
- Dry Process
- Wet Process
- Environmental
- Field Performance



- Sourcing
- Dry Process
  - What production parameters affect dispersion, plastic coating of the aggregate and the extent of mix modification?
  - How much modification occurs to the virgin binder?
  - How are key mix volumetric properties affected)?
  - How are plant production, field constructability and workability affected?
- Wet Process
- Environmental
- Field Performance



- Sourcing
- Dry Process

## Wet Process

- Storage separation issues
- How will standard binder testing procedures be modified to properly characterize plastic modified binders?
- Compatible with anti-stripping additives, WMA, recycling agents?
- Fatigue and low-temperature cracking properties?
- Certain types of plastics are insoluble in solvents commonly used for extraction and recovery for lab characterization.
- Environmental
- Field Performance



- Sourcing
- Dry Process
- Wet Process
- Environmental
  - Are microplastics generated and released in the air from milling?
  - Can RAP from mixtures with plastic be run through a plant without concern for hazardous emissions?
  - Are there other plant issues such as coating the baghouse with plastic fines?
  - Will there be leachates or microplastics from in-service plastic roads or RAP stockpiles containing plastic?
- Field Performance



- Sourcing
- Dry Process
- Wet Process
- Environmental
- Field Performance
  - Needs more thorough and comprehensive evaluation.

**Summary** 



