

AASHTO / ASTM Update to DSR-PAV ($|G^*|sin\delta$)

Chris Campbell Americas Asphalt Technical and Group Lead Imperial Oil

Why Change DSR-PAV ($|G^*| \sin \delta$)?

- SHRP developed SuperPave[™] PG System in late 80s
 - Validated based on binders available at the time
 - Based on climate, selecting high and low temperature limits
- Why was DSR-PAV needed
 - Needed to capture area where roads were transitioning between season Intermediate temperature
 - Focus at the intermediate temperature was fatigue performance
- DSR-PAV Challenges
 - Test is shown to have high variability (~28% d2s% AASHTO)
 - Intermediate temperature based on (high PG T + low PG T)/2+4 °C Not necessarily where cracking occurs
 - $|G^*| \sin \delta$, is the loss modulus, G'' not clear how parameter can identify sensitivity to cracking
 - Limit of 5000 kPa was created from estimates of 1950s road trial data

What was done to improve DSR-PAV ($|G^*| \sin \delta$)

Industry task force was created to evaluate test

- 1. Modify T315 test protocol to reduce the test variability to acceptable level
 - Thermal equilibrium time & plate size/strain
- 2. Review scientific validity of DSR-PAV parameter $|G^*|\sin \delta$
- 3. Review ability of DSR-PAV test to discriminate poor performers
 - 40 binders covering wide range & compositions

Findings 1: Testing Improvements

• Inter-lab study showed test variability could not be viably improved

Observation

Findings 2: Science Behind DSR-PAV

- $|G^*|\sin \delta \otimes 5000$ kPa limit benefits low phase angle (brittle binders)
- High quality ductile binders with high phase angle are disadvantaged

Two binders, same complex modulus, different phase angle

*CTAA 2020 - A Simple Binder Specification Tweak to Promote Best Performers

Findings 3: DSR-PAV Ability to Discriminate Poor Asphalts

- Phase instability impedes stress relaxation
 - Demonstrated by more negative delta Tc, higher aging index & lower phase angle
- These parameters correlate to performance as they represent aging & relaxation rates
 - Critical parameters when cracking is considered
- |G*|sin δ was found not to correlate with any of these parameters in study sample set
 - All study samples passed $|G^*|\sin \delta$ limit of 5000 kPa including results w/ delta Tc > -10°C

Items Impacting Asphalt Stability

Phase Angle Supports Differentiation

PG 64-22: 100% Cold Lake straight distilled asphalt

PG 70-22 w/ REOB: 100% Cold Lake straight distilled asphalt softened to PG 64-22 with REOB PG 70-22 w/ Asphalt Flux: 100% Cold Lake straight distilled asphalt softened to PG 64-22 with soft asphalt

ExonMobil Imperial

New Specification Adopted by AASHTO and ASTM

AASHTO Technical subcommittee 2b (liquid asphalt) approved revision to standard

- Reviewed by 34 committee members comprising 33 states and Ontario
- Revision received unanimous approval

AASHTO (M320/M332) & ASTM (D6373) now allow binders with DSR-PAV $|G^*|sin\delta$ parameter between 5001 - 6000 kPa if the phase angle at the intermediate PG temperature is > 42°

North American Adoption of New Limit

* Acceptance data representative of information provided at time of collection, status may vary

* Product movement based on publically available information and internal estimates

Summary

- |G*|sin δ has high variability
 - High variability results in poor test performance
- Phase Angle better parameter for differentiating poor performing binders
 - Phase angle captures materials ability to relax or dissipate stresses with less variability in testing
 - Higher phase angle represents a more viscous material, better at dissipating stress
 - Material that can dissipate stresses sufficiently are less likely to cause cracking
- Asphalt entering market from other regions
 - Most provinces & states have adopted new $|G^*|sin \delta$ limit of 6000 w/ phase angle >42°
 - Local suppliers could be challenged to meet 5000 kPa limit based on material sourcing
 - Supply may require modification to meet Ontario requirements for DSR-PAV

Thank You